Custom Search

Saturday, August 23, 2008

Friction And Its Types

Friction is the force resisting the relative motion of two surfaces in contact or a surface in contact with a fluid (e.g. air on an aircraft or water in a pipe). It is not a fundamental force, as it is derived from electromagnetic forces between atoms and electrons, and so cannot be calculated from first principles, but instead must be found empirically. When contacting surfaces move relative to each other, the friction between the two objects converts kinetic energy into thermal energy, or heat. Friction between solid objects is often referred to as dry friction or sliding friction and between a solid and a gas or liquid as fluid friction. Both of these types of friction are called kinetic friction. Contrary to many popular explanations, sliding friction is caused not by surface roughness but by chemical bonding between the surfaces.[1] Surface roughness and contact area, however, do affect sliding friction for micro- and nano-scale objects where surface area forces dominate inertial forces.[2] Internal friction is the motion-resisting force between the surfaces of the particles making up the substance. Friction should not be confused with traction. Surface area does not affect friction significantly, but in traction it is essential.

What is Friction?
Friction is the "evil" of all motion. No matter which direction something moves in, friction pulls it the other way. Move something left, friction pulls right. Move something up, friction pulls down. It appears as if nature has given us friction to stop us from moving anything.
Friction is actually a force that appears whenever two things rub against each other. Although two objects might look smooth, microscopically, they're very rough and jagged, as this picture shows:
As they slide against each other, their contact is anything BUT smooth. They both kind of grind and drag against each other. This is where friction comes from.
But friction is not all bad. In fact, it has a lot to do with life as we know it here on Earth. Without it, we wouldn't be able to walk, sit in a chair, climb stairs, or use a mouse to surf the web. Everything would just keep slipping and falling all over the place.

Coulomb friction
Coulomb friction, named after Charles-Augustin de Coulomb, is a model to describe friction forces. It is described by the equation:
Ff = μFn
where
Ff is either the force exerted by friction, or, in the case of equality, the maximum possible magnitude of this force.
μ is the coefficient of friction, which is an empirical property of the contacting materials,
Fn is the normal force exerted between the surfaces
For surfaces at rest relative to each other μ = μs, where μs is the coefficient of static friction. This is usually larger than its kinetic counterpart. The Coulomb friction may take any value from zero up to Ff, and the direction of the frictional force against a surface is opposite to the motion that surface would experience in the absence of friction. Thus, in the static case, the frictional force is exactly what it must be in order to prevent motion between the surfaces; it balances the net force tending to cause such motion. In this case, rather than providing an estimate of the actual frictional force, the Coulomb approximation provides a threshold value for this force, above which motion would commence.
For surfaces in relative motion μ = μk, where μk is the coefficient of kinetic friction. The Coulomb friction is equal to Ff, and the frictional force on each surface is exerted in the direction opposite to its motion relative to the other surface.
This approximation mathematically follows from the assumptions that surfaces are in atomically close contact only over a small fraction of their overall area, that this contact area is proportional to the normal force (until saturation, which takes place when all area is in atomic contact), and that frictional force is proportional to the applied normal force, independently of the contact area (you can see the experiments on friction from Leonardo Da Vinci). Such reasoning aside, however, the approximation is fundamentally an empirical construction. It is a rule of thumb describing the approximate outcome of an extremely complicated physical interaction. The strength of the approximation is its simplicity and versatility – though in general the relationship between normal force and frictional force is not exactly linear (and so the frictional force is not entirely independent of the contact area of the surfaces), the Coulomb approximation is an adequate representation of friction for the analysis of many physical systems.

Coefficient of friction
The coefficient of friction (also known as the frictional coefficient) is a dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together. The coefficient of friction depends on the materials used; for example, ice on steel has a low coefficient of friction (the two materials slide past each other easily), while rubber on pavement has a high coefficient of friction (the materials do not slide past each other easily). Coefficients of friction range from near zero to greater than one – under good conditions, a tire on concrete may have a coefficient of friction of 1.7.
When the surfaces are conjoined, Coulomb friction becomes a very poor approximation (for example, Scotch tape resists sliding even when there is no normal force, or a negative normal force). In this case, the frictional force may depend strongly on the area of contact. Some drag racing tires are adhesive in this way.
The force of friction is always exerted in a direction that opposes movement (for kinetic friction) or potential movement (for static friction) between the two surfaces. For example, a curling stone sliding along the ice experiences a kinetic force slowing it down. For an example of potential movement, the drive wheels of an accelerating car experience a frictional force pointing forward; if they did not, the wheels would spin, and the rubber would slide backwards along the pavement. Note that it is not the direction of movement of the vehicle they oppose, it is the direction of (potential) sliding between tire and road.
The coefficient of friction is an empirical measurement – it has to be measured experimentally, and cannot be found through calculations. Rougher surfaces tend to have higher effective values. Most dry materials in combination have friction coefficient values between 0.3 and 0.6. Values outside this range are rarer, but Teflon, for example, can have a coefficient as low as 0.04. A value of zero would mean no friction at all, an elusive property – even Magnetic levitation vehicles have drag. Rubber in contact with other surfaces can yield friction coefficients from 1.0 to 2.

Static friction
Static friction is a force between two objects that are not moving relative to each other. For example, static friction can prevent an object from sliding down a sloped surface. The coefficient of static friction, typically denoted as μs, is usually higher than the coefficient of kinetic friction. The initial force to get an object moving is often dominated by static friction.
Another important example of static friction is the force that prevents a car wheel from slipping as it rolls on the ground. Even though the wheel is in motion, the patch of the tire in contact with the ground is stationary relative to the ground, so it is static rather than kinetic friction.
The maximum value of static friction, when motion is impending, is sometimes referred to as limiting friction,[3] although this term is not used universally.[4] The value is given by the product of the normal force and coefficient of static friction.
Static frictional forces from the interlocking of the irregularities of two surfaces will increase to prevent any relative motion up until some limit where motion occurs. It is that threshold of motion which is characterized by the coefficient of static friction. The coefficient of static friction is typically larger than the coefficient of kinetic friction.
In making a distinction between static and kinetic coefficients of friction, we are dealing with an aspect of "real world" common experience with a phenomenon which cannot be simply characterized. The difference between static and kinetic coefficients obtained in simple experiments like wooden blocks sliding on wooden inclines roughly follows the model depicted in the friction plot from which the illustration above is taken. This difference may arise from irregularities, surface contaminants, etc. which defy precise description. When such experiments are carried out with smooth metal blocks which are carefully cleaned, the difference between static and kinetic coefficients tends to disappear. When coefficients of friction are quoted for specific surface combinations are quoted, it is the kinetic coefficient which is generally quoted since it is the more reliable number.

Kinetic friction
Kinetic (or dynamic) friction occurs when two objects are moving relative to each other and rub together (like a sled on the ground). The coefficient of kinetic friction is typically denoted as μk, and is usually less than the coefficient of static friction.
Examples of kinetic friction:
Sliding friction (also called dry friction) is when two objects are rubbing against each other. Putting a book flat on a desk and moving it around is an example of sliding friction.
Fluid friction is the interaction between a solid object and a fluid (liquid or gas), as the object moves through the fluid. The drag of air on an airplane or of water on a swimmer are two examples of fluid friction. This kind of friction is not only due to rubbing, which generates a force tangent to the surface of the object (such as sliding friction). It is also due to forces that are orthogonal to the surface of the object. These orthogonal forces significantly (and mainly, if relative velocity is high enough) contribute to fluid friction. Fluid friction is the classic name of this force. This name is no longer used in modern fluid dynamics. Since rubbing is not its only cause, in modern fluid dynamics the same force is typically referred to as drag or fluid resistance, while the force component due to rubbing is called skin friction. Notice that a fluid can in some cases exert, together with drag, a force orthogonal to the direction of the relative motion of the object (lift). The net force exerted by a fluid (drag + lift) is called fluidodynamic force (aerodynamic if the fluid is a gas, or idrodynamic is the fluid is a liquid).

When two surfaces are moving with respect to one another, the frictional resistance is almost constant over a wide range of low speeds, and in the standard model of friction the frictional force is described by the relationship below. The coefficient is typically less than the coefficient of static friction, reflecting the common experience that it is easier to keep something in motion across a horizontal surface than to start it in motion from rest.


Friction Plot
Static friction resistance will match the applied force up until the threshold of motion. Then the kinetic frictional resistance stays about constant. This plot illustrates the standard model of friction.

The above plot, though representing a simplistic view of friction, agrees fairly well with the results of simple experiments with wooden blocks on wooden inclines. The experimental procedure described below equates the vector component of the weight down the incline to the coefficient of friction times the normal force produced by the weight on the incline.

Having taken a large number of students through this experiment, I can report that the coefficient of static friction obtained is almost always greater than the coefficient of kinetic friction. Typical results for the woods I have used are 0.4 for the static coefficient and 0.3 for the kinetic coefficient.
When carefully standardized surfaces are used to measure the friction coefficients, the difference between static and kinetic coefficients tends to disappear, indicating that the difference may have to do with irregular surfaces, impurities, or other factors which can be frustratingly non-reproducible. To quote a view counter to the above model of friction:"Many people believe that the friction to be overcome to get something started (static friction) exceeds the force required to keep it sliding (sliding friction), but with dry metals it is very hard to show any difference. The opinion probably arises from experiences where small bits of oil or lubricant are present, or where blocks, for example, are supported by springs or other flexible supports so that they appear to bind." R. P. Feynman, R. P. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. I, p. 12-5, Addison-Wesley, 1964.
Other types of friction

Rolling resistance
Main article: Rolling resistance
Rolling resistance is the force that resists the rolling of a wheel or other circular objects along a surface. Generally the force of rolling resistance is less than that associated with kinetic friction.[5] Typical values for the coefficient of rolling resistance are 0.001.[6] One of the most common examples of rolling resistance is the movement of motor vehicle tires on a road, a process which generates heat and sound as by-products.[7]

Triboelectric effect
Rubbing dissimilar materials against one another can cause a build-up of electrostatic charge, which can be hazardous if flammable gases or vapours are present. When the static build-up discharges, explosions can be caused by ignition of the flammable mixture.

Reducing friction

Devices
Devices such as tires, ball bearings, air cushion or roller bearing can change sliding friction into a much smaller type of rolling friction. Many thermoplastic materials such as nylon, HDPE and PTFE are commonly used for low friction bearings. They are especially useful because the coefficient of friction falls with increasing imposed load.

Lubricants
A common way to reduce friction is by using a lubricant, such as oil, water, or grease, which is placed between the two surfaces, often dramatically lessening the coefficient of friction. The science of friction and lubrication is called tribology. Lubricant technology is when lubricants are mixed with the application of science, especially to industrial or commercial objectives.
Superlubricity, a recently-discovered effect, has been observed in graphite: it is the substantial decrease of friction between two sliding objects, approaching zero levels. A very small amount of frictional energy would still be dissipated.
Lubricants to overcome friction need not always be thin, turbulent fluids or powdery solids such as graphite and talc; acoustic lubrication actually uses sound as a lubricant.

Energy of friction
According to the law of conservation of energy, no energy is destroyed due to friction, though it may be lost to the system of concern. Energy is transformed from other forms into heat. A sliding hockey puck comes to rest because friction converts its kinetic energy into heat. Since heat quickly dissipates, many early philosophers, including Aristotle, wrongly concluded that moving objects lose energy without a driving force.
When an object is pushed along a surface, the energy converted to heat is given by:
where
Fn is the normal force,
μk is the coefficient of kinetic friction,
x is the coordinate along which the object transverses.
Physical wear is associated with friction. While this can be beneficial, as in polishing, it is often a problem. As materials are worn away, fit and finish of a object can degrade until it no longer functions properly.[8]

Work of friction
In the reference frame of the interface between two surfaces, static friction always does no work, because there is never any displacement. In the same reference frame, kinetic friction is always in the direction opposite the motion and so does negative work.[9] However, friction can do positive work in certain inertial frames of reference. One can see this by placing a heavy box on a rug, then pulling on the rug quickly. In this case, the box slides backwards relative to the rug, but moves forward relative to the floor, an inertial frame of reference. Thus, the kinetic friction between the box and rug accelerates the box in the same direction that the box moves, doing positive work.[10]
The work done by friction can translate into deformation, wear, and heat that can affect the contact surface's material properties (and even the coefficient of friction itself). The work done by friction can also be used to mix materials such as in the technique of friction welding.

6 comments:

Unknown said...

awesome Article.
Today my paper will be about this topic.So really great helpful for me .Thank u

Unknown said...

thanks for giving my physics project

Unknown said...

It's a nice post about types of friction. I really helpful. I like it. Thanks for sharing it.

Unknown said...

Really very nice notes, easy to understand, every concept is clear.

arsene said...
This comment has been removed by the author.
arsene said...

well detailed notes.Easy to understand.